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Abstract

Genetic disease control is generally not given the importance it deserves. Information about

what percentage of individuals carry a disorder-causing mutation is crucial for breeders to

produce healthy offspring and maintain a healthy dog population of a particular breed. This

study aims to provide information about the incidence of mutant alleles for the most fre-

quently occurring hereditary diseases in the Australian Shepherd dog breed (AS). The sam-

ples were collected during a 10-years period (2012–2022) in the European population of the

AS. Mutant alleles and incidence were calculated from all the obtained data for all the dis-

eases, specifically: collie eye anomaly (9.71%), canine multifocal retinopathy type 1

(0.53%), hereditary cataract (11.64%), progressive rod-cone degeneration (1.58%), degen-

erative myelopathy (11.77%) and bob-tail/short-tail (31.74%). Our data provide more infor-

mation to dog breeders to support their effort to limit the spread of hereditary diseases.

Introduction

Access to accurate genetic testing results for hereditary disorders and information about their

incidence in purebred dog populations allows breeders to select the right individuals for mat-

ing to obtain healthy offspring, thus suppressing the incidence of the disease. Moreover,

understanding genetic disease’s background can bring more effective treatments.

This study has focused on the incidence of wild-type and mutant alleles of six genetic disor-

ders occurring in the Australian Shepherd breed (AS). The AS developed in western states of

the US, contrary to what its name suggests. The breed is likely descended from shepherd

breeds used by Basque sheepherders in the borderland region between France and Spain.

Their ancestors followed the Basques to Australia, where they were crossed with other shep-

herd dogs like Collie and Border Collie, until they eventually found their way to the US during

the Gold Rush era along with the sheep they herded. Here the breed quickly became the herd-

ing dog of choice for American cowboys, who referred to it as AS. In 1957 the Australian

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0281215 February 27, 2023 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Majchrakova Z, Hrckova Turnova E,

Bielikova M, Turna J, Dudas A (2023) The

incidence of genetic disease alleles in Australian

Shepherd dog breed in European countries. PLoS

ONE 18(2): e0281215. https://doi.org/10.1371/

journal.pone.0281215

Editor: Nidaa Ababneh, University of Jordan,

JORDAN

Received: July 18, 2022

Accepted: January 18, 2023

Published: February 27, 2023

Copyright: © 2023 Majchrakova et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by institutional

resources of Slovgen Ltd., as part of the internal

research project 2016-SG-01 in collaboration with

the Department of Molecular Biology, Faculty of

Natural Sciences, Comenius University in

Bratislava. Slovgen Ltd. provided support in the

form of salary for author ZM from 2022. The

specific role of this author is articulated in the

https://orcid.org/0000-0002-9414-5651
https://doi.org/10.1371/journal.pone.0281215
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281215&domain=pdf&date_stamp=2023-02-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281215&domain=pdf&date_stamp=2023-02-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281215&domain=pdf&date_stamp=2023-02-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281215&domain=pdf&date_stamp=2023-02-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281215&domain=pdf&date_stamp=2023-02-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281215&domain=pdf&date_stamp=2023-02-27
https://doi.org/10.1371/journal.pone.0281215
https://doi.org/10.1371/journal.pone.0281215
http://creativecommons.org/licenses/by/4.0/


Shepherd Club of America (ASCA) was formed, and the breed standard was established twenty

years later. The AS was admitted as a breed by the American Kennel Club in 1993 [1, 2].

Although considered a generally healthy breed, there are several hereditary disease alleles

reported in AS (Table 1), namely: collie eye anomaly (CEA), canine multifocal retinopathy

type 1 (CMR1), hereditary cataract (HC), multidrug sensitivity (MDR1), progressive rod-cone

degeneration (PRA-PRCD), degenerative myelopathy (DM) and bob-tail/short-tail (SHT/

NBT)—technically not a disease, but mating two homozygous mutants produce puppies with

spinal cord defects, moreover, in a majority of cases the homozygous GG allele combination is

lethal in early foetal life [3]. This article does not cover multidrug sensitivity, as we have already

analysed the incidence of MDR1 mutation in affected breeds, including AS, in our previous

work [4].

Collie eye anomaly (CEA) is a hereditary autosomal recessive disease in sheep-herding

breeds caused by abnormal embryonic development, which results in severe eye deformations

(choroidal hypoplasia, coloboma, staphyloma and retinal detachment) and, in the final stages,

even blindness. This disease was first noticed in 1953 in Rough Collie dogs; since then, more

affected breeds have been identified [5–8]. Collie Rough, Collie Smooth, Border Collie,

Table 1. An overview of six genetic disorders with their corresponding gene, chromosome number, genomic location, mutation, effect, inheritance, OMIA number

and human homologue.

Disorder Gene CFA Genomic location Mutation Effect Inheritance OMIA

number

Human homologue

Collie eye

anomaly (CEA)

NHEJ1 CFA37 g.25698028_25705826del c.588+462_588

+260del

XM_005640671.1; a

deletion of 7799bp

in the NHEJ1 gene

AR OMIA

000218-

9615

Severe combined

immunodeficiency (SCID) with

microcephaly, growth

retardation, and sensitivity to

ionizing radiation (IR)

https://omim.org/entry/611290

Canine multifocal

retinopathy, type

1 (CMR1)

BEST1 CFA18 g.54478586G>A c.73C>T p.(R25�) AR OMIA

001444-

9615

Macular dystrophy

https://omim.org/entry/153700

Bestrophinopathy

https://omim.org/entry/611809

Vitreoretinochoroidopathy

https://omim.org/entry/193220

Retinitis pigmentosa

https://omim.org/entry/613194

Degenerative

myelopathy (DM)

SOD1 CFA31 g.26540342G>A c.118G>A p.(E40K) AR OMIA

000263-

9615

Amyotrophic lateral sclerosis

https://omim.org/entry/105400

Primary

hereditary

cataract (HSF4)

HSF4 CFA5 g.82198114_82198115insG c.971_972insC p.(P324Hfs�87) AR OMIA

001758-

9615

Cataract

https://omim.org/entry/116800

Hyperuricosuria

(HUU)

SLC2A9 CFA3 g.69456869G>T c.563G>T p.(C188F) AR OMIA

001033-

9615

Hypouricemia 1 and 2

https://omim.org/entry/612076

https://omim.org/entry/220150

Malignant

hyperthermia

(MH)

RYR1 CFA15 g.114562165A>G c.1643T>C p.(V548A) AR OMIA

000621–

9615

Malignant hyperthermia

https://omim.org/entry/145600

Progressive rod-

cone degeneration

(PRCD)

PRCD CFA9 g.4188663C>T c.5G>A p.(C2Y) AR OMIA

001298-

9615

Retinitis pigmentosa

https://omim.org/entry/610599

Short tail (SHT) T—
gene

CFA1 g.54192143G>C c.189C>G p.(I63M) AD OMIA

000975-

9615

-

https://doi.org/10.1371/journal.pone.0281215.t001
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Shetland Sheepdog and AS appear to be in the same cluster and share a common Collie ancestor,

so causative mutation causing CEA in the NHEJ1 gene seems to be identical by descent and is one

of the top three most common congenital ocular disorders that affect AS [9–11]. The deletion of

7799 bp is located in intron 4 (67 kbp) of the NHEJ1 gene on chromosome CFA37 [5].

The bilateral focal serous detachments of the retina and multiple fundic lesions are the pri-

mary symptoms of canine multifocal retinopathy (CMR) which belongs to a group of retinal

diseases called bestrophinopathies, which can also be found in humans [12, 13]. The autosomal

recessive CMR type 1 disease is caused by a stop mutation in the BEST1 gene (C73T). It affects

11 dog breeds worldwide derived from the Mastiff line and, surprisingly, not genetically

related to the AS dogs [13–15]. The BEST1 gene encodes 66 kDa transmembrane protein

found in the retina (retinal pigment epithelium, choroid) and in small amounts in the brain.

The transition C73T in the N-terminal domain leads to the production of a premature stop

codon and the formation of a truncated anion channel protein 25 codons long instead of 580

codons in wild-type form [16].

The adult-onset canine degenerative myelopathy (DM) belongs to a family of muscular

neurodegenerative disorders characterised by the progressive destruction of neuronal motor

functions and demyelination of sheaths surrounding the nerve fibres. It represents a great

canine disease model for superoxide dismutase 1 associated with human amyotrophic lateral

sclerosis [17]. In 2009, the mutation associated with canine DM was described as a substitution

of G to A in a highly conserved Cu/Zn—superoxide dismutase 1 (SOD1) gene on chromosome

31 (c.118G to A, p.E40K) [18]. A histological examination reveals insoluble inclusions of mis-

folded proteins in the cytoplasm of motor neurons in the spinal cord sections, which are also

typical for human amyotrophic lateral sclerosis [19, 20].

The bilaterally symmetrical and progressive hereditary cataract (HC) typically results in

complete blindness of homozygous mutants. This non—congenital disability could be gener-

ally detected between 8 to 12 weeks after birth. Lens opacity and progression leading to the

first signs of blindness appear around 2 to 3 years of age [21, 22]. The mutation associated with

HC was identified in the HSF4 gene (heat shock transcription factor 4) located on chromo-

some 5. HC in Staffordshire Bull Terrier, Boston Terrier and French Bulldog breeds is an auto-

somal recessively inherited disease. All affected individuals carry a single nucleotide insertion

of cytosine in exon 9 (CFA5 g85286582–85286583insC) in the HSF4 gene. On the other hand,

in the AS breed, the exact same location contains a different mutation—cytosine deletion

(g.85286582delC) and inheritance was described as an autosomal dominant form with incom-

plete penetrance. Both mutations, insertion and deletion, lead to a frameshift mutation and

create a premature stop codon, resulting in a truncated and aberrant protein and failure of its

function [21–24].

The late onset autosomal recessive canine progressive rod-cone degeneration (PRCD)

belongs to a large group of phenotypically very similar retinal disorders called progressive reti-

nal atrophies [14, 25]. The first five to seven years of the postnatal development of photorecep-

tors seem to be with no structural and functional degeneration. However, the destruction of

the outer segments of both photoreceptors can be seen, eventually leading to total bilateral

blindness. Deterioration of rods was found to be faster than cones [26–28]. The *600 bp long

PRCD gene encodes a*6 kDa S-acetylated rhodopsin-binding protein consisting of 54 amino

acids. It can be especially found in photoreceptor discs, where it plays a crucial role in the pho-

toreceptor disc morphogenesis by keeping invaginating membranes of new discs tightly close

together [29, 30]. The equivalent mutation c.5G>A resulting in the C2Y substitution in dogs

can also be observed in human retinitis pigmentosa (RP) due to the highly conserved region in

all vertebrates. Hence dogs represent a great model for RP research which can be widely stud-

ied [29, 31].
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Haworth et al. described the mutation causing short-tail phenotype in dogs for the first

time in 2001 [32]. In 2009, Hytonen et al. revealed that the missense mutation responsible for

this condition could be found in 17 dog breeds, including AS [33]. The substitution C to G

(c.189C to G) in a canine homologue of the T-box transcription factor T is transmitted as auto-

somal dominant. The result is a defective protein that does not bind to its target DNA. All phe-

notypically homozygous mutants were found to be only heterozygotes, which leads to the

conclusion that the presence of both mutant alleles (GG) is not compatible with foetal develop-

ment because it is lethal [3, 32, 33]. This statement is supported by the fact that only two tailless

puppies of the Welsh Corgi Pembroke from two litters were homozygous for the mutant allele,

but one died a few seconds after birth [3].

These diseases cause mild to serious health issues for the affected animals. Moreover, most

of the mentioned diseases have similar or identical backgrounds in humans. Thus, dogs appear

to be great animal models. An overview of six genetic disorders with their corresponding gene,

chromosome number, genomic location, mutation, effect, inheritance, OMIA number and

similar human models are listed in Table 1.

Materials and methods

Ethical statement

The research was conducted in full compliance and strict accordance with the ethical codex of

Comenius University in Bratislava.

DNA samples and isolation

DNA samples of AS were submitted by dog owners or their veterinarians. In most cases, they

provided us with the chip number, the dog’s full name, the kennel’s name, and the studbook

entry number. Buccal samples were collected using a cytological brush or swab, and EDTA

blood samples were obtained from veterinarians. DNA was extracted using Gentra Puregene

Blood Kit (Qiagen), QIAamp DNA Investigator Kit (Qiagen) or DNeasy Blood & Tissue Kit

(Qiagen) according to the manufacturer’s instructions. All samples were stored at 4˚C until

further analysis. In cooperation with Slovgen diagnostic laboratory, a total number of 2595

dogs were analysed during the period of 10 years (CEA—1503 samples, CMR1–376 samples,

DM—722 samples, HC—1641 samples, PRA-PRCD—1454 samples and SHT—282 samples).

Mutation analysis and genotyping

The required part of genomic DNA was amplified using primers listed in S1 Table to deter-

mine the presence or the absence of the mutant allele for each analysed gene.

PCR mixture for each amplification reaction contained 2–2.5 mM MgCl2, 1x Dream Taq

buffer (Thermo Fisher Scientific), 1 μM1 of both forward and reverse primer, 0.25 mM dNTPs

(Thermo Fisher Scientific), 1 U Dream Taq polymerase (Thermo Fisher Scientific), approxi-

mately 50 ng of template DNA and H2O.

We used PCR followed by the restriction fragment length polymorphism (RFLP) analysis

to detect alleles of CMR1, DM, PRCD and SHT alleles. The restriction enzyme digestion was

performed in a 20 μl reaction mixture which consisted of 2 U of the restriction endonuclease

(HphI—CMR1, Eco57I - DM, SfaNI—HUU, AlwI and RsaI—PRCD, FD-Eco91I - SHT)

(Thermo Fisher Scientific), 1x supplied buffer, 10 μl PCR product and distilled water. Frag-

ments were separated by size using electrophoresis on 1.5% agarose gel or 10% polyacrylamide

gel, depending on the product length.
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Sequencing was used for HSF4 mutation screening and for verifying the results of RFLP

methods. The five samples were chosen randomly from each genotype available, and the

sequencing data were compared with the results of the RFLP analysis.

The PCR products were directly sequenced after ExoSAP-IT (Applied Biosystems) treat-

ment using PCR primers with the ABI BigDye Terminator Sequencing Kit 3.1 (Applied Bio-

systems) on an ABI 3500 capillary sequencer. Sequence data were analysed with Vector NTI

Advance 7.0 (Invitrogen).

Results

Over a period of 10 years, together 2595 samples from privately owned pet dogs from the

European population of AS were collected and analysed, namely: CEA—1503 pcs, CMR1–376

pcs, DM—722 pcs, HC—1641 pcs, PRA-PRCD—1454 pcs and SHT 282 pcs. These data were

obtained in cooperation with the Slovgen diagnostic laboratory (Bratislava, Slovakia), where

tests were performed as a part of its diagnostic services. Health status, medical records, treat-

ments, and other documentation of tested dogs were unavailable due to ownership mostly by

private breeders and owners. They have provided us with basic dog identifiers like breed, gen-

der, chip number and studbook entry number. Blood relations among analysed individuals

were not known. Therefore, it can be assumed that the Hardy-Weinberg principle does not

apply considering breeding methods (for example selection, non-random mating).

For six analysed diseases, the highest incidence of the mutant allele was observed for SHT

(31.74%), followed by DM (11.77%), HC (11.64%) and CEA (9.71%). For PRA-PRCD and

CMR1, the mutant allele was present in low frequency at 1.58% and 0.53%, respectively

(Table 2). For each disease, the incidence data are summarised per country in Tables 3–8 (only

for the top five countries by the number of samples). The incidence in two-year bins is summa-

rised in Fig 1, and the trends in frequencies of heterozygotes for ten years in two-year bins are

summarised in (Fig 2A–2F).

Table 2. Summarising the distribution of the mutant and wild-type allelic data of six disorders from all 2595 tested dogs.

Disease Number of analysed samples Frequency of mutant allele (%) Genotype (%)

(+/+) (+/-) (-/-)

CEA 1503 9.71 80.84 18.90 0.26

CMR1 376 0.53 98.93 1.06 0

DM 722 11.77 77.15 22.16 0.69

HC 1641 11.64 76.72 23.28 0

PRA-PRCD 1454 1.58 97.04 2.75 0.21

SHT 282 31.74 36.52 63.48 0

https://doi.org/10.1371/journal.pone.0281215.t002

Table 3. Comparison of genotype and mutant allele frequencies in the top five countries for CEA disease.

Country Number of analysed samples Frequency of mutant allele (%) Genotype (%)

(+/+) (+/-) (-/-)

France 557 14.99 75.04 19.93 5.03

Czech Republic 226 7.07 85.84 14.16 0

Germany 148 7.77 84.46 15.54 0

Poland 111 9.46 81.08 18.92 0

Belgium 94 5.85 88.3 11.70 0

https://doi.org/10.1371/journal.pone.0281215.t003
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Discussion

Many canine hereditary diseases and genetic predispositions are recognised and well charac-

terised from clinical signs to the gene defects. Precise diagnostic tools and procedures have

been developed to detect the causal mutation responsible for the disease. Breeders should use

this information wisely in their breeding program, while preserving the genetic variability of

the breed at the same time. Scientists cooperating with cynological organisations and breeders

should monitor the incidence of the mutant allele in the population. Unfortunately, although

many mutations have already been identified, breeding clubs’ activities in this field are coun-

try/club dependent, and that is why such information is almost nonexistent in the complex

form. Our goal was to analyse and present such data for AS dog breed in European countries.

We have chosen six mutations associated with hereditary diseases in AS. The data for the

MDR1 defect was already presented as a part of our other study [4]. It is necessary to note that

short-tail is more of a developmental defect than an actual disease, and it is a typical trait for

this breed. Nevertheless, in a homozygous state, short-tail mutation leads to embryonic lethal-

ity [3].

Collie eye anomaly (CEA)

In our study, we focused on four ocular disorders (CEA, PRA-PRCD, CMR1, HC), and in this

list, CEA was the second most prevalent. The phenotypic development of the disease varies sig-

nificantly in the CEA-affected animals. A retrospective evaluation of congenital ocular defects

in Australia indicated that CEA is the second most common congenital anomaly in AS [11]. In

Switzerland, 571 AS were ophthalmologically examined over a period of 8 years (1999–2007),

and only one dog was affected with choroidal hypoplasia [34].

The mutant allele frequency in our findings was 9.71%, and almost no homozygous

mutants were detected (0.26%), similar to reported results from Italian, Czech and Belgian

populations [8, 35, 36]. The slightly lower frequency of the mutant allele observed in these

studies was probably caused by their relatively small cohort. The CEA incidence in European

countries (Table 3) increased in France in our cohort. The frequency of the mutant allele in

the Czech Republic was higher (7.07%) than the one observed by Dostal et al. (4.5%) in 2010

[35].

Fig 1. The trends in incidence of the six diseases in the AS breed. The time period: 2012–2022. Each coloured line

represents the incidence of the mutant alleles in CEA, CMR1, DM, HC, PRCD and SHT diseases over two-year

periods.

https://doi.org/10.1371/journal.pone.0281215.g001
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On the other hand, the CEA frequency reported in Belgium by Beckers et al. (3.1%) was

lower than in our survey (5.85%) [36]. We cannot exclude the possibility that it is just the effect

of a more significant number of individuals included in our study. Little is known about the

incidence of CEA mutation in non-European populations of AS. According to OFA (Ortho-

paedic Foundation for Animals) statistics based on CEA test results of 128 AS from the North

American population, the incidence is 1.98%, which is much lower than in Europe [37]. The

Fig 2. (A-F). The frequencies of the heterozygotes and the number of analysed samples of the six diseases in the AS breed throughout

2012–2022. Blue rectangles—number of samples over the two-year periods, orange line: the frequencies of the heterozygotes.

https://doi.org/10.1371/journal.pone.0281215.g002
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frequency of the mutant allele, revealed by the CEA survey in Thailand, was 5.1% [38]. It could

be an effect of genetic drift, but further large-scale studies are required to confirm such a

hypothesis.

Canine multifocal retinopathy (CMR)

CMR belongs to relatively rare ocular defects. For the presence of cmr1 mutation, 376 individ-

uals were analysed. Of all investigated defects, cmr1 mutant allele occurred at the lowest fre-

quency, 0.53% and was found only in the heterozygous state. It was approximately five times

lower (2.85%) than reported in an extensive survey which also included 140 AS [39], but

higher than in OFA testing statistics, where in the cohort of 74 individuals, the mutant allele

was not detected [37]. A closer look at the mutation frequency in European countries with a

sufficient number of individuals showed a moderate frequency increase in the AS population

in France (Table 4).

Degenerative myelopathy (DM)

The mutation is widespread in many dog breeds, including AS. DM is the only disease in this

study where we observed a relatively increased frequency of dogs homozygous for the mutant

allele. Zeng et al. examined 113 AS individuals, 31.9% were homozygous affected, and 17.7%

were heterozygotes for the mutation [40]. In the OFA statistics covering 276 dogs from the

North American population of AS, carriers represented 19.9% and homozygous affected

13.4% [37]. The mutant allele frequencies were 40.75% and 23.35%, respectively. In our find-

ings, only 0.69% were homozygous for the mutant allele, and 22.16% were heterozygotes. The

incidence of the mutant allele was at least two times lower than in the American population.

The different frequencies observed may be due to the different sizes of analysed populations

or, more probably, because these populations are geographically separated. It could be related

to genetic drift during the import of AS to Europe. There are only minor differences in the

incidence of sod1 mutation in European countries (Table 5).

Table 4. Comparison of genotype and mutant allele frequencies in the top five countries for CMR1 disease.

Country Number of analysed samples Frequency of mutant allele (%) Genotype (%)

(+/+) (+/-) (-/-)

France 90 1.11 97.78 2.22 0

Czech Republic 86 0.58 98.84 1.16 0

Austria 54 0 100 0 0

Germany 34 0 100 0 0

Estonia 19 0 100 0 0

https://doi.org/10.1371/journal.pone.0281215.t004

Table 5. Comparison of genotype and mutant allele frequencies in the top five countries for DM disease.

Country Number of analysed samples Frequency of mutant allele (%) Genotype (%)

(+/+) (+/-) (-/-)

France 198 10.1 81.31 17.17 1.52

Germany 123 13.41 73.17 26.83 0

Czech Republic 105 13.81 73.33 25.72 0.95

Belgium 88 11.36 78.41 20.45 1.14

Austria 55 10.9 78.18 21.82 0

https://doi.org/10.1371/journal.pone.0281215.t005
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Hereditary cataract (HC)

In the present study, carriers represented 23.28% of the AS population, and the remaining

76.72% were homozygous healthy dogs. The incidence of hsf4 mutant allele was the highest of

all hereditary ocular diseases in our study. In 2009, Mellersh et al. investigated 392 individuals

with comparable results to ours (HC +/+ 70.6%, HC +/- 25.6% and HC -/- 3.8%) [23]. Mellers

et al. reported a slightly higher percentage of the mutant allele (16.6% vs 11.64%), but it should

be noted that their cohort included a group of dogs with clinically verified cataracts [23]. In

contrast, two other studies observed a lower frequency of the mutant allele (6.95% and 7.8%),

but their cohorts were much smaller (140 and 32 individuals) [36, 39]. Among European coun-

tries, the highest frequency was observed in the Czech Republic (17.6%) and the lowest in Ger-

many (3.46%) (Table 6). We can only speculate if this observation is related to different

breeding rules in these countries or is just a coincidence in analysed groups.

Progressive rod-cone degeneration (PRCD)

PRCD is an inherited disease that occurs in many dog breeds and manifests in various forms.

The mutation frequency was low in the tested population for this inherited disease (1.58%).

Moreover, less than 3% of the analysed dogs were heterozygotes, which led us to conclude that

PRCD appears rare in the AS breed. It is further supported by the OFA report, with an inci-

dence of 1.22% [37]. The sequence was slightly increased in Austria and Belgium (Table 7). In

other breeds, for example, English Cocker Spaniels, the high frequency of mutant allele was

observed (25.5%) [28].

Short tail (SHT)

According to our observations, a high percentage (63.48%) of heterozygotes was found, and

the highest frequency of the mutant allele was observed in comparison to other diseases

(Table 2). A short tail is caused by an autosomal dominant mutation in the T-box of the tran-

scription factor T gene [32]. Individuals with short tails carry the mutation in a heterozygous

state. The mutation in a homozygous state has fatal consequences and leads to death. Thus,

mating two heterozygotes is not recommended. The mating of two heterozygous individuals

Table 6. Comparison of genotype and mutant allele frequencies in the top five countries for HC disease.

Country Number of analysed samples Frequency of mutant allele (%) Genotype (%)

(+/+) (+/-) (-/-)

France 573 10.21 79.58 20.42 0

Czech Republic 287 17.6 64.81 35.19 0

Germany 159 3.46 93.08 6.92 0

Belgium 149 9.06 81.88 18.12 0

Austria 137 8.76 82.48 17.52 0

https://doi.org/10.1371/journal.pone.0281215.t006

Table 7. Comparison of genotype and mutant allele frequencies in the top five countries for PRA-PRCD disease.

Country Number of analysed samples Frequency of mutant allele (%) Genotype (%)

(+/+) (+/-) (-/-)

France 558 2.15 96.24 3.22 0.54

Czech Republic 192 0 100 0 0

Germany 174 1.15 97.7 2.3 0

Austria 125 4 92 8 0

Belgium 118 2.97 94.07 5.93 0

https://doi.org/10.1371/journal.pone.0281215.t007
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showed a 30% loss of puppies per litter [3, 32]. Currently, due to legislation, tail docking is

restricted in many countries. Since the traditional look is important for many owners, breeders

may tend to produce more natural “bobtails”. We are also aware that some of the results may

be biased as they come from routine diagnostics, and dogs with standard tail lengths are not

tested for the presence of the mutation, which may overestimate the mutation frequency.

In addition to the overall incidence of analysed diseases, we have also investigated how dis-

ease allele incidence and carrier frequencies have developed over time (Figs 1 and 2). We have

observed a moderate decrease in incidence, but except SHT, all diseases were present in rela-

tively low frequencies. This observation concurs with a large-scale survey, which determined

changes in the frequency of disease-causing mutations after introducing a commercial DNA

test [41]. They found that data from test results show a slight general decline in either the

mutation frequency or the proportion of carriers.

Since its official registration as a purebred breed, AS, like the other modern breeds, had to

face common breeding practices, which amplified the incidence of autosomal recessive genetic

disorders. The complex data about the incidence of known hereditary diseases in the European

population are almost non-existent; therefore, our aim was to reveal the actual state. The high-

est incidence was observed for SHT mutation, which was not surprising, since short-tail is a

typical trait for AS, although a homozygous state leads to embryonal death. For three other dis-

eases (HC, DM, CEA), the incidence of the mutant allele was approximately 10%, and they

require breeders’ attention when planning to mate. Moreover, HC disorder in AS has an auto-

somal dominant mode of inheritance with incomplete penetrance. Therefore, use of heterozy-

gotes should be carefully considered in breeding. The remaining two diseases (PRCD, CMR1)

showed a relatively low frequency of the mutant allele and represented less risky diseases, but

due to the nature of modern breeding, their incidence should be monitored.

Conclusion

This study gives an overview of six hereditary diseases frequently present in the AS breed and

the mutant alleles’ incidence for each of them. Altogether, we tested 2595 AS individuals dur-

ing a 10-year time span. The findings of this study suggest controlling the mating process by

testing all mating individuals and choosing, if possible, clinically healthy dogs. Healthy carriers

should be kept in breeding programs if the selected mate is homozygous clear. Any eradication

of disease alleles should happen slowly and gradually so that loss of genetic diversity is avoided

as much as possible. This controlled elimination can significantly reduce affected alleles in the

population and emphasise the importance of genotyping as a method of early diagnosis.
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Table 8. Comparison of genotype and mutant allele frequencies in the top five countries for SHT disease.

Country Number of analysed samples Frequency of mutant allele (%) Genotype (%)

(+/+) (+/-) (-/-)

Austria 49 20.40 59.18 40.82 0

Czech Republic 39 30.77 38.46 61.54 0

Germany 35 22.86 54.29 45.71 0

Poland 32 43.75 12.5 87.5 0

France 31 38.71 22.58 77.42 0

https://doi.org/10.1371/journal.pone.0281215.t008
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